Markov Chain Analysis of Cumulative Step-Size Adaptation on a Linear Constrained Problem
نویسندگان
چکیده
This paper analyzes a (1, λ)-Evolution Strategy, a randomized comparison-based adaptive search algorithm optimizing a linear function with a linear constraint. The algorithm uses resampling to handle the constraint. Two cases are investigated: first, the case where the step-size is constant, and second, the case where the step-size is adapted using cumulative step-size adaptation. We exhibit for each case a Markov chain describing the behavior of the algorithm. Stability of the chain implies, by applying a law of large numbers, either convergence or divergence of the algorithm. Divergence is the desired behavior. In the constant step-size case, we show stability of the Markov chain and prove the divergence of the algorithm. In the cumulative step-size adaptation case, we prove stability of the Markov chain in the simplified case where the cumulation parameter equals 1, and discuss steps to obtain similar results for the full (default) algorithm where the cumulation parameter is smaller than 1. The stability of the Markov chain allows us to deduce geometric divergence or convergence, depending on the dimension, constraint angle, population size, and damping parameter, at a rate that we estimate. Our results complement previous studies where stability was assumed.
منابع مشابه
Cumulative Step-size Adaptation on Linear Functions: Technical Report
The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing functions with affine linear ...
متن کاملCumulative Step-Size Adaptation on Linear Functions
The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing functions with affine linear ...
متن کاملA Generalized Markov-Chain Modelling Approach to $(1,\lambda)$-ES Linear Optimization: Technical Report
Several recent publications investigated Markov-chain modelling of linear optimization by a (1, λ)-ES, considering both unconstrained and linearly constrained optimization, and both constant and varying step size. All of them assume normality of the involved random steps, and while this is consistent with a black-box scenario, information on the function to be optimized (e.g. separability) may ...
متن کاملMarkov Chain Anticipation for the Online Traveling Salesman Problem by Simulated Annealing Algorithm
The arc costs are assumed to be online parameters of the network and decisions should be made while the costs of arcs are not known. The policies determine the permitted nodes and arcs to traverse and they are generally defined according to the departure nodes of the current policy nodes. In on-line created tours arc costs are not available for decision makers. The on-line traversed nodes are f...
متن کاملCombination of Genetic Algorithm With Lagrange Multipliers For Lot-Size Determination in Capacity Constrained Multi-Period, Multi-Product and Multi-Stage Problems
Abstract : In this paper a meta-heuristic approach has been presented to solve lot-size determination problems in a complex multi-stage production planning problems with production capacity constraint. This type of problems has multiple products with sequential production processes which are manufactured in different periods to meet customer’s demand. By determining the decision variables, mac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolutionary computation
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2015